December 2016

IZA DP No. 10449: Estimating Matching Affinity Matrix under Low-Rank Constraints

published in: Information and Inference: A Journal of the Institute of Mathematics and its Applications, 2019, 8(4), 677–689..

In this paper, we address the problem of estimating transport surplus (a.k.a. matching affinity) in high dimensional optimal transport problems. Classical optimal transport theory species the matching affinity and determines the optimal joint distribution. In contrast, we study the inverse problem of estimating matching affinity based on the observation of the joint distribution, using an entropic regularization of the problem. To accommodate high dimensionality of the data, we propose a novel method that incorporates a nuclear norm regularization which effectively enforces a rank constraint on the affinity matrix. The lowrank matrix estimated in this way reveals the main factors which are relevant for matching.