Because finite sample inference for inequality indices based on asymptotic methods or the standard bootstrap does not perform well, Davidson and Flachaire (Journal of Econometrics, 2007) and Cowell and Flachaire (Journal of Econometrics, 2007) proposed inference based on semiparametric methods in which the upper tail of incomes is modelled by a Pareto distribution. Using simulations, they argue accurate inference is achievable with moderately large samples. We provide the first systematic application of these and other inferential approaches to real-world income data (high-quality UK household survey data covering 1977–2018), while also modifying them to deal with weighted data and a large portfolio of inequality indices. We find that the semiparametric asymptotic approach provides a greater number of statistically significant differences than the semiparametric bootstrap which in turn provides more than the conventional asymptotic approach and the ‘Student-t’ approach (Ibragimov et al., Econometric Reviews, 2025), especially for year-pair comparisons within the period from the late-1980s onwards.
We use cookies to provide you with an optimal website experience. This includes cookies that are necessary for the operation of the site as well as cookies that are only used for anonymous statistical purposes, for comfort settings or to display personalized content. You can decide for yourself which categories you want to allow. Please note that based on your settings, you may not be able to use all of the site's functions.
Cookie settings
These necessary cookies are required to activate the core functionality of the website. An opt-out from these technologies is not available.
In order to further improve our offer and our website, we collect anonymous data for statistics and analyses. With the help of these cookies we can, for example, determine the number of visitors and the effect of certain pages on our website and optimize our content.