December 2019

IZA DP No. 12822: Estimating Poverty for Refugee Populations: Can Cross-Survey Imputation Methods Substitute for Data Scarcity?

Hai-Anh Dang, Paolo Verme

The increasing growth of forced displacement worldwide has led to the stronger interest of various stakeholders in measuring poverty among refugee populations. However, refugee data remain scarce, particularly in relation to the measurement of income, consumption, or expenditure. This paper offers a first attempt to measure poverty among refugees using cross-survey imputations and administrative and survey data collected by the United Nations High Commissioner for Refugees in Jordan. Employing a small number of predictors currently available in the United Nations High Commissioner for Refugees registration system, the proposed methodology offers out-of-sample predicted poverty rates. These estimates are not statistically different from the actual poverty rates. The estimates are robust to different poverty lines, they are more accurate than those based on asset indexes or proxy means tests, and they perform well according to targeting indicators. They can also be obtained with relatively small samples. Despite these preliminary encouraging results, it is essential to replicate this experiment across countries using different data sets and welfare aggregates before validating the proposed method.