The Demand for Older Workers: The Role Of Technology And Skill

John Abowd, John Haltiwanger, Julia Lane, Kevin McKinney, and Kristin Sandusky May 16-17, 2005 IZA Workshop on Older Workers

- Demand for older workers is "demand for composition of skills embodied in older workers"
- Some questions to answer along the way:
 - How does skill mix differ across older/younger workers?
 - How does technology differ across businesses with greater share of older workers?

Basic Approach
• Production relationship at firm level as function
of skill composition for firm *j* with technology Z:

$$y_{jt} = F(Z_{jt}, L_{1jt}, ..., L_{Hjt})$$

• Treating Z as quasi-fixed, cost minimization
(Shepherd's lemma) yields for workers of type s
(where S is share of type s workers):

$$S_{sjt} = S(Z_{jt}, y_{jt}, w_{1jt} / w_{Hjt}, ..., w_{sjt} / w_{Hjt}, ...)$$

Measuring of Human Capital: Estimation

 $\ln w_{it} = \theta_i + x_{it}\beta + \psi_{\mathbf{J}(i,t)} + \varepsilon_{it}$

- We use a decomposition of the log real annualized fulltime, full-year wage rate (In *w*) into person and firm effects.
- The person effect is θ.
- The firm effect is ψ , where J(i,t) is the employer of *i* at *t*.
- Continuous, time-varying effects are in $x\beta$, where some of the *x* variables are human capital measures (labor force experience) and some correct for differential quality in our measure of full-time, full-year wage rate.

Key Findings on Technology and Demand for Skills

- Technology principal component implies higher h
- Software relative to hardware component implies mixed effects on h, generally favors lower h
- Higher capital intensity implies higher h
- Higher inventory/sales implies higher h
- Higher firm effect implies higher h
- Higher probability of surviving (selection control) implies higher h
- All of above controls for establishment age, output of firm (scale) and local county relative wages

Demand Estimation Results									
		first_quartile	first_quartile	second_quar	second_quar	third_quartile	third_quartile	fourth_quartil	fourth_quartil
labelname	vartype	_asm	_bes	tile_asm	tile_bes	_asm	_bes	e_asm	e_bes
Technology Index	param	-0.0098	-0.0468	-0.0109	-0.0075	0.0003	0.0161	0.0282	0.0374
Technology Index	std. err.	0.0077	0.0066	0.0055	0.0039	0.0060	0.0039	0.0082	0.0063
Software Relative to Hardware	param	0.0062	0.0062	0.0007	0.0046	0.0006	-0.0110	-0.0022	0.0018
Software Relative to Hard	std. err.	0.0050	0.0057	0.0036	0.0034	0.0039	0.0034	0.0053	0.0055
Capital Intensity	param	-0.0533	-0.0076	-0.0142	-0.0009	0.0281	0.0014	0.0366	0.0075
Capital Intensity	std. err.	0.0034	0.0041	0.0024	0.0024	0.0026	0.0024	0.0036	0.0039
Inventory/Sales	param	-0.0406	-0.0905	-0.0039	0.0186	-0.0101	0.0699	0.0282	0.0029
Inventory/Sales	std. err.	0.0043	0.0047	0.0031	0.0028	0.0033	0.0028	0.0046	0.0045
Mills Ratio	param	-0.0146	-0.0091	-0.0001	0.0014	0.0015	0.0021	0.0172	0.0055
Mills Ratio	std. err.	0.0073	0.0113	0.0053	0.0067	0.0057	0.0068	0.0078	0.0108
noi	param	-0.1350	-0.2298	0.0490	-0.0011	0.1103	0.1010	0.0116	0.1403
psi					0.0054	0.0100	0.0050	0.0070	0.0400

Older Workers and Technology: Industry Variation

- These patterns vary greatly by industries:
 - Industries where workers with zero older coworkers are more computer intensive include:
 - Textile Mills (22), Transportation equipment (37), Instruments (38), Furniture and Equipment Stores (57)
 - Industries where workers with zero older coworkers are more software intensive include:
 - Chemicals (28), Instruments (37), Furniture and Equipment Stores (57), Business services (73)
 - Industries where workers with zero older coworkers are more capital intensive include:
 - Chemicals (28), Instruments (38), Business Services (73)

