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Abstract

This paper addresses the estimation of a class of models which features two
endogenous and dependent binary outcomes. This class includes the triangular
model with a binary outcome and a binary treatment, and several interesting
variants on the sample selection model. The structure of the model imposes
no distributional assumptions on the disturbances nor does it require that they
enter additively. We formulate a quasi maximum likelihood estimator with
semiparametric components that incorporate several bias adjustments. Under
these adjustments, we establish desirable large sample properties using regular
kernels in place of higher order kernels. Simulation evidence con�rms that this
estimator performs well in �nite samples.

�Address correspondence to Chan Shen, Department of Economics, Georgetown University, ICC
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1 Introduction

This paper analyses the estimation of a class of semiparametric index models which

feature two endogenous binary outcomes. This class incorporates a large range of

models that are important for empirical work including binary treatment models

with non-additive errors where the outcome of interest is binary. It covers the se-

lection model with non-additive errors where the selection process is captured by an

indicator function and the outcome of interest for the selected sample is binary. It

also includes models where the outcome of interest for the selected sample is measured

by a continuous outcome but the selection process is a function of two binary rules.

Earlier papers in the semi parametric literature have focussed on other variants of

the binary choice model. For example, Blundell and Powell (2004) and Rothe (2009)

have developed estimators for semiparametric binary response models that depend

on a continuous endogenous variable, as opposed to an endogenous binary variable

as considered here. Hoderlein (2009) formulates an estimator for binary response

models when the coe¢ cients are random. However, for the class of index models with

joint binary outcomes considered here, to the best of our knowledge, it has not been

previously estimated in a semiparametric index framework.

To establish large sample properties for index models, it is necessary to control for

the bias in the estimator. There is a literature on multiple and single index models

that controls for the bias by selecting a kernel function that is not regular (see, for

example, Ichimura and Lee (1991), Klein and Spady (1993), Lee (1995) and Klein and

Vella (2009)). However, while it is well known that regular kernels generally perform

better than higher order kernels in �nite samples, they do not have desirable theoreti-

cal properties. For a variant of Semiparametric Least-Squares, Klein and Shen (2009)
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provide a bias reducing mechanism that makes it possible to employ regular kernels

under a single index assumption. In this paper we relax the single index assumption

and propose an estimator under the quasi-likelihood framework. Employing the ap-

propriate bias adjustments, we show that the estimator based on regular kernels has

both desirable theoretical properties and �nite sample performance.1 We note that

these bias reduction mechanisms can be extended to index models other than the

particular class considered here. We also note that in these index models, estimates

of marginal e¤ects can be obtained from these index parameters. When a binary re-

sponse model is fully observed and does depend on a binary exogenous treatment

variable, the theory for these marginal e¤ects is immediate. Here we consider joint

binary models where either one of the explanatory variables is an endogenous binary

treatment or one binary relation is subject to sample selection. In these cases, the

theory for estimating marginal e¤ects is substantially di¤erent from that for index

parameters and is beyond the scope of the present paper.2

The following section outlines the general model and highlights some special cases.

It also brie�y describes the estimation procedure. Sections 3 and 4 provide the as-

sumptions and the details of the estimator. Section 5 provides simulation evidence,

and concluding comments are o¤ered in section 6.

1There are other alternative methods that control for the bias under regular kernels. For ex-
ample, Powell and Honore (2005) employ a jackknife approach where the �nal estimator is a linear
combination of estimators using di¤erent windows.

2In the context of an index model, we address these issues in Klein, Shen, and Vella (2009a-b).
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2 Models

The models considered here all contain the following underlying component:

Y1i = I fg(Y2i; Xi�o; �i) > 0g (1)

Y2i = I fh(Zi�o; ui) > 0g (2)

where the Y 0s are the endogenous binary variables generated via the indicator function

If:g; X and Z are vectors of exogenous variables; �i and ui are error terms with a

non-zero correlation; g(:) and h(:) are unknown functions; and the �o and �o are

unknown parameter values.

Notice that linear combinations of exogenous variables, Xi�o and Zi�o, enter each

equation. We refer to these linear combinations as indices and assume in (A 3) that

probabilities of interest only depend on X and Z through these indices. . We impose

this index structure, as opposed to a non-parametric one, to improve the performance

of the estimator. As is well known in the literature, the indices are identi�ed up to

location and scale. Namely, the �0s are identi�ed in the following normalized indices:

Xi�o = b1o(X1i +X2i�1o) + c1o

Zi�o = b2o(Z1i + Z2i�2o) + c2o

where X1i is a continuous variable which belongs to the model, X2i is the vector of

all other X-variables. The Z-variables are de�ned similarly. Note that identifying

�0s will generally make it possible to identify the probabilities and marginal e¤ects of
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interest.

The model can be characterized as a triangular system with a binary outcome

and a binary endogenous explanatory variable. We allow the index in the reduced

form equation, (2), to interact in an unspeci�ed way with the disturbance, while in

the main equation, (1), the index freely interacts with both the disturbance and the

endogenous explanatory variable. The model can be viewed as a basic component of a

number of di¤erent models, several of which we discuss below. The models below di¤er

along two dimensions. First, there are endogenous treatment and selection versions.

Second, the models di¤er according to whether or not they contain an additional

equation for a continuous outcome.

2.1 Binary Outcomes with Binary Selection Rule

The �rst model is a semiparametric variant on the Heckman (1974, 1979) selection

model where the outcome of interest is binary. More explicitly:

Y1i = I fg(V1i; �i) > 0g � Y2i; V1i � V1i (�1o) � X1i +X2i�1o (3)

Y2i = I fh(V2i; ui) > 0g ; V2i � V2i (�2o) � Z1i + Z2i�2o (4)

where Y1i is only observed for the subsample for which Y2i = 1: When the model is

additive, and the joint distribution of the errors is parametrically known, it can be

estimated by maximum likelihood (see e.g., Poirier (1980) and Vella (1998)). However,

in the present binary context, with neither separability nor known error distributions,

the existing available estimators do not apply. We propose a suitable estimator.
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2.2 Binary Outcomes with Binary Endogenous Treatment

The second model has an endogenous binary treatment variable without sample se-

lection. Namely:

Y1i = I fg(Y2i; V1i; �i) > 0g (5)

Y2i = I fh(V2i; ui) > 0g : (6)

If the g and h functions in both equations are additively separable (i.e. threshold-

crossing models) and the errors are jointly normal, then maximum likelihood may be

employed to estimate the parameters. We provide an estimator when these restrictions

do not hold.

Several important extensions of the above models add a continuous outcome equa-

tion. With the binary indicator Y2 not appearing in the Y1-model, consider the fol-

lowing example of multiple selection:

Y3i = (Wi�o + co + ei) � IfY1i = 1; Y2i = 1g

noting that the manner in which the two indicators interact to determine the ob-

servability of Y3i determines the applicability of the available procedures. Das et. al.

(2003) focus on the above continuous outcome equation and assume that the sample

selection correction is a function of the propensity scores from the joint binary model

shown above. When the joint binary model is fully observed or does not contain an

endogenous variable, this assumption holds.

De Luca and Peracchi (2010) employ the procedure of Gallant and Nychka (1987)
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and provide a semiparametric estimator under a threshold crossing structure. Their

approach estimates the indices for the selection equations and then uses a Robin-

son (1988) di¤erencing approach to account for the selection in the Y3i equation.

Yavuzoglua and Tunali (2009) consider a similar structure to that of De Luca and

Peracchi but impose normality in the selection equations. Normality is relaxed in

the Y3i equation by including control functions based on appropriate expansions. We

impose neither distributional or threshold crossing assumptions here and note that a

Robinson (1988) style can be constructed to estimate the Y3i equation when one has

estimates of the indices in the selection equations.

Another extension has Y2 appearing in the Y1-model and considers the case where

the continuous outcome is subject to sample selection and contains an endogenous

binary treatment indicator:

Y3i = (Wi�o + co + Y2i
o + ei) � I(Y1i = 1)

Shen (2009) estimates such a model, where Y2i is a binary insurance decision, Y1i

is a binary healthcare utilization decision, and Y3i is a continuous healthcare expen-

diture variable that is positive for individuals that access healthcare and depends

on the insurance decision. In that paper, there is a di¢ cult problem in estimating

the marginal treatment e¤ect. Part of the theory for it depends on a
p
N -consistent

estimator for the double binary component which we develop here.
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3 Estimation

We now develop estimators for both the binary selection case and the binary treatment

case. To accommodate both we introduce the following notation: For fd1; d2g =

f0; 1g, in the binary treatment model, let:

Yi(d1; d2) = IfY1i = d1; Y2i = d2g:

In the binary selection case, let:

Yi(d1; d2) =

8><>: IfY1i = d1; Y2i = d2g for d2 = 1

IfY2i = d2g for d2 = 0
:

Finally, let:

P̂i (d1; d2; �) � P̂ (Yi(d1; d2) = 1jVi (�) = vi (�))

where Vi (�) = (V1i (�) ; V2i (�)). The parameter estimates are given by maximizing a

quasi or estimated likelihood:

�̂ � argmax
�

L̂ (�) ;

L̂ (�) �
NX
i=1

� i
X
d1;d2

Yi(d1; d2)Ln
�
P̂i (d1; d2; �)

�
:

where � i is a trimming function de�ned below to control for small density denomina-

tors.

When Y1i and Y2i are both observed, there are four possible outcomes corre-

sponding to di¤erent combinations of fd1; d2g. For the binary model for which Y1i
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is observed only if Y2i = 1; there are only three possible outcomes because of partial

observability.

In maximizing the above likelihood, the properties of the estimates depend on

how the probabilities are estimated. If they are based on appropriately chosen higher

order or bias-reducing kernels, they have desirable large sample properties, but often

do not perform well in �nite samples. On the other hand, if they are based on regular

kernels without employing any bias reduction mechanisms, the estimates frequently

have good �nite sample properties but are not asymptotically distributed as normal

at a
p
N�rate. Our objective is to avoid this trade-o¤by providing an estimator that

performs well in �nite sample while retaining desirable large sample properties. To

do so we introduce several bias control mechanisms other than higher-order kernels.

To motivate these mechanisms, we show below that the gradient to the quasi-

likelihood is a product of terms, one of which is the derivative of the probability

function, r�P̂i(d1; d2; �0); noting that �0 denotes the true value: From Theorem 0

below, which is due to Whitney Newey:

E (r�Pi(d1; d2; �0) j Vi (�0)) = 0:

In an iterated expectations argument, we show that if the trimming function only

depended on the index and if the probability derivative could be taken as known, the

gradient would have expectation 0.3 We now need to solve three problems. First,

the trimming function must depend on the estimated indices. To this end, in (D8)

below, we de�ne a two stage estimation procedure, where the estimated indices are

3As shown below, in an iterated expectations argument, conditioning �rst on X, the indicator
has conditional expectation that only depends on indices. The result then follows.

9



recovered in the �rst stage. Second, we need to prove that we can take the estimated

probability derivative function as known. Employing the adjustment in (D9) below,

we are able to resolve this problem. Third, index trimming poses a problem for the

consistency argument. We discuss the nature of this problem below and show that

it is resolved by employing the adjusted semiparametric probabilities in (D6). With

these bias controls, we are able to obtain asymptotic results using regular kernels.

4 Assumptions and De�nitions

We now provide the assumptions and de�nitions that we employ to establish the

asymptotic properties for the estimators of the index parameters in the double binary

component.

A1. The Data. In the fully observed case, (Y1i; Y2i; Si), i = 1; :::; N , are i.i.d.

observations from the model in (1)-(2). With S as the NXK matrix of obser-

vations on the explanatory variables and with 1
¯
as an NX1 column vector of

ones, the columns of [S 1
¯
] are linearly independent with probability 1. In the

case of partial observability, Y1i is only observed when Y2i = 1; and Si may or

may not be partially observed.

A2. Parameter Space. The vector of true parameter values �o = (�o; �o) for the

model in (1)-(2) lies in the interior of a compact parameter space, �:

A3. Model. De�ne the indices for the reduced form and primary equations as V2

and V1 respectively, and assume each contains a continuous exogenous variable.

Further, V2 contains at least one continuous variable, which is excluded from
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V1. With dk = 0; 1; assume:

Pr (Y1i = d1; Y2i = d2jXi) = Pr (Y1i = d1; Y2i = d2jV1i; V2i)

Pr (Y2i = d2jXi) = Pr (Y2i = d2jV1i; V2i) .

A4. Densities. Let g(v1; v2jY1; Y2) be the indicated conditional density for the

indices. Let rpg be any of the partials or cross partials of g up to order p, with

r0g = g: Assume that g > 0 on all �xed compact subsets of the support for

the indices. Further, assume that rpg, @
@�
(rpg), and @2

@�@�
(rpg) are bounded

for p = 0; 1; 2:

Assumptions (A1) and (A2) are standard. Assumption (A3) imposes a double

index structure on the Y1-model and a single index structure on the Y2-model. These

index assumptions are automatically satis�ed when the errors are independent of the

index variables. Finally, assumption (A4) provides required smoothness conditions

for determining the order of the bias for density estimators. In addition to the above

assumptions, we also need a number of de�nitions for densities, probability functions

and estimators.

D1. Unadjusted Densities. Term K(�) as a regular kernel if it is a density

symmetric about zero. For d2 = 0; 1; de�ne:

f̂2 (t2; d2) �
NX
j=1

Y d2
2j (1� Y2j)

1�d2

Nhm
K

�
t2 � V2j
hm

�
;

where with �2 as the standard deviation for V2; the window parameter is given

as: hm � �2N
�rm ; rm = 1

6+�
. For regular kernels K1 and K2; and with

11



d1; d2 = 0; 1; de�ne:

f̂ (t; d1; d2) �
NX
j=1

Y d1
1j (1� Y1j)

1�d1Y d2
2j (1� Y2j)

1�d2

Nhc1hc2
K1(

t1 � V1j
hc1

)K2(
t2 � V2j
hc2

);

where with �k as the standard deviation for Vk; k = 1; 2, the window parameters

are given as: hc1 � �1 hc; hc2 � �2 hc; hc � N�rc ; rc =
1
8+�

:When the condi-

tioning value tk, is replaced by the observation Vik; then the above averages are

taken over the (N � 1) observations for which j 6= i:4

D2. Unadjusted Probabilities. Let:

P̂ (Y2i = d2jV2i = t2) � f̂2 (t2; d2) =

1X
d2=0

f̂2 (t2; d2)

P̂ (Y1i = d1jY2i = d2; Vi = t) � f̂ (t; d1; d2) =
1X

d1=0

f̂ (t; d1; d2) :

With d2 = 1 for the binary selection model and d2 = 0; 1 for the binary treat-

ment model, de�ne:

P̂ (Y1i = d1; Y2i = d2jVi = t) = P̂ (Y2i = d2jV2i = t2) P̂ (Y1i = d1jY2i = d2; Vi = t) :

D3. Smooth Trimming. De�ne a smooth trimming function as:

� (z;m) � [1 + exp (Ln(N) [z �m])]�1 :

4It can easily be shown that all estimators with windows depending on population standard
deviations are asymptotically the same as those based on sample standard deviations. For notational
simplicity, we employ population standard deviations throughout.

12



D4. Interior Index Trimming. Let V̂ U
k and V̂ L

k be the upper and lower sample

index quantiles for the indices: Vk � Vk (�) ; k = 1; 2; and let V U
k and V L

k be

the corresponding population quantiles. Then, de�ne smooth interior trimming

functions as:

�̂ I (tk) � �
�
V̂ L
k ; tk

�
�
�
tk; V̂

U
k

�
� I (tk) � �

�
V L
k ; tk

�
�
�
tk; V

U
k

�
:

D5. Density Adjustment. Let q̂2 be a lower sample quantile for f̂2 (V2; d2), and q̂

be a lower sample quantile for f̂ (V ; d1; d2), and let q2 and q be the corresponding

population quantiles. Then, de�ne estimated adjusted densities as:

f̂ �2 (t2; d2) = f̂2 (t2; d2) + �̂2(d2); �̂2(d2) � a
2N
[1� �̂ I (t2)] q̂2

f̂ � (t; d1; d2) = f̂ (t; d1; d2) + �̂ (d1; d2) ; �̂ (d1; d2) � a
N
[1� �̂ I (t1) �̂ I (t2)] q̂:

With f2 and f as the probability limits of f̂2 and f̂ ; de�ne the adjusted densities:

f �2 (t2; d2) = f2 (t2; d2) + �2(d2); �2(d2) � a
2N
[1� � I (t2)] q2

f � (t; d1; d2) = f (t; d1; d2) + � (d1; d2) ; �(d1; d2) � a
N
[1� � I (t1) � I (t2)] q:

Referring to the window parameters in (D1), a
N
� N�r=2 and a

2N
� N�r2=2:
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D6. Adjusted Semiparametric Probability Functions. Let:

P̂ � (Y2i = d2jV2i = t2) � f̂ �2 (t2; d2) =

1X
d2=0

f̂ �2 (t2; d2)

P̂ � (Y1i = d1jY2i = d2; Vi = t) � f̂ � (t; d1; d2) =
1X

d1=0

f̂ � (t; d1; d2)

P � (Y2i = d2jV2i = t2) � f �2 (t2; d2) =
1X

d2=0

f �2 (t2; d2)

P � (Y1i = d1jY2i = d2; Vi = t) � f � (t; d1; d2) =
1X

d1=0

f � (t; d1; d2) :

Then, as in (D2), with d2 = 1 for the binary selection model and d2 = 0; 1; in

the case of binary treatment, de�ne adjusted probabilities:

P̂ � (Y1i = d1; Y2i = d2jVi = t) = P̂ � (Y2i = d2jV2i = t2) P̂
� (Y1i = d1jY2i = d2; Vi = t)

P � (Y1i = d1; Y2i = d2jVi = t) = P � (Y2i = d2jV2i = t2)P
� (Y1i = d1jY2i = d2; Vi = t) :

D7. Likelihood Trimming. De�ne � ix as an indicator that is one if all of the

continuous X0s are between their respective lower and upper sample quantiles,

and de�ne � iv as an indicator that is one if the estimated index vector V
�
�̂
�

is between lower and upper sample quantiles. Here, �̂ is a consistent estimator

for �o that is de�ned below.

D8. First and Second Stage Estimators. To de�ne estimators for both selection

and treatment models we use the de�nitions stated above and de�ne the �rst
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stage estimator as:

�̂ � argmax
�

L̂ (�) ;

L̂ (�) �
NX
i=1

� ix
X
d1;d2

Yi(d1; d2)Ln
�
P̂i (d1; d2; �)

�

recalling that � iv is a trimming function based on the estimated index vector,

V
�
�̂
�
, de�ned in (D7). In the objective function above, replace P̂ with P̂ �

de�ned as in (D6), replace �̂X with �̂V , and term the new objective function as

L̂� (�) : Then, de�ne the second stage estimator:

�̂
� � argmax

�
L̂� (�) :

D9. The Adjusted Estimator. Letting

P̂ �i (d1; d2; �) � P̂ � (Yi(d1; d2) = 1jVi (�) = vi (�))

�̂
�
i (d1; d2; �) � r�P̂

�
i (d1; d2; �)=P̂

�
i (d1; d2; �);

de�ne the bias component of the gradient to L̂� (�) as:

B̂�
�
�̂
�� � � NX

i=1

� iv

�
�̂
��X

d1;d2

h
P̂ �i

�
d1; d2; �̂

��� Pi

�
d1; d2; �̂

��i
�̂
�
i

�
d1; d2; �̂

��
:

De�ne P̂ o (d1; d2; �) as an estimated semiparametric probability function where

the components are based on optimal window parameters: r = ro = 1=6 and
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r2 = ro2 = 1=5: De�ne:

B̂o
�
�̂
�� � � NX

i=1

� iv

�
�̂
��X

d1;d2

h
P̂ oi

�
d1; d2; �̂

��� Pi

�
d1; d2; �̂

��i
�̂
�
i

�
d1; d2; �̂

��
:

Then, de�ne a gradient correction as:

Ĉ
�
�̂
�� � B̂o

�
�̂
��� B̂�

�
�̂
��
:

With Ĥ
�
�̂
��
as the estimated hessian, the adjusted estimator is de�ned as:

�̂
o � �̂

� � Ĥ
�
�̂
���1

Ĉ
�
�̂
��
:

As stated earlier, the proofs exploit a residual-like property of the derivative (with

respect to the parameters) of the true semiparametric probability function. Namely,

this derivative has conditional expectation of zero when evaluated at the true para-

meter values. By using this property, which we will de�ne and prove below, we can

further control for the bias in the gradient to the objective function, which is essential

in establishing asymptotic normality. In so doing, we will not be able to trim on the

basis of X and instead must trim on the basis of estimated indices. It is for this

reason that we de�ne the two stage estimator in (D8). However, the index trimming

is problematic in the consistency argument where density denominators can tend to

zero when evaluated away from the truth. Therefore, we employ the �̂ adjustment

factors in (D5) to keep the density denominators away from zero. By employing

these adjustments, together with the bias reducing adjustment in (D9), we are able

to establish asymptotic results under regular kernels.
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5 Asymptotic Results

We now outline the proof strategy for the various estimator stages in which bias

reducing devices are employed in conjunction with regular kernels. The �rst is based

on a result due to Whitney Newey and is given in the following theorem:

Theorem 0: With V (�0) � V (X; �0) as the vector of indices, assume the follow-

ing index restriction holds:

Pi (d1; d2; �0) = P (Yi(d1; d2) = 1jV (�0)) � F (V (�0)) :

Then:

E fr�Pi (d1; d2; �0)g = 0:

Proof: Let � (�) � V (�0)� V (�) and observe that � (�0) = 0 and that r�� (�) =

�r�V (�) : Then, employing the index restriction and using iterated expectations:

P (Y1i = d1; Y2i = d2jV (�)) = EX [Pi (d1; d2; �0) j V (�)]

� EX [F [V (�0)] j V (�)]

� EX [F [V (�) + � (�)] j V (�)]

� G (V (�) ; � (�)) :

Let Gk be the partial derivative of G taken w.r.t. � in the kth argument of G, k =
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1,2. From the chain rule:

r�G (V (�) ; � (�)) j�=�0 = G1 (V (�) ; 0) j�=�0 +G2 (V (�0) ; � (�)) j�=�0

= r�F ( V (�)) j�=�0 � E [r�F ( V (�)) j V (�0)]�=�0 :

The theorem now follows.

To take advantage of this result, let

�̂ (d1; d2; �) �
r�P̂i (d1; d2; �)

P̂i (d1; d2; �)
:

Then, since indicators and probabilities sum to one over all possible cells, the gradient

to the objective function has the form:

Ĝ =
1

N

NX
i=1

X
d1;d2

"
Yi (d1; d2)

P̂i (d1; d2; �o)

#
r�P̂i (d1; d2; �o) � ix (7)

=
1

N

NX
i=1

X
d1;d2

"
Yi (d1; d2)

P̂i (d1; d2; �o)
� 1
#
r�P̂i (d1; d2; �o) � ix

=
1

N

NX
i=1

X
d1;d2

h
Yi (d1; d2)� P̂i (d1; d2; �o)

i
�̂i (d1; d2; �o) � ix;

where the second line follows because:

X
d1;d2

P̂i (d1; d2; �o) = 1)
X
d1;d2

r�P̂i (d1; d2; �o) = 0:

With � as the probability limit of �̂; from the above theorem, E (�jV ) = 0: There-

fore, this multiplicative gradient component can serve as a source of bias reduction
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while still employing regular kernels. To exploit this residual-like property of the prob-

ability gradient, we need to resolve the three problems discussed earlier. First, even

if we could take � as known, trimming on the basis of X poses a problem. In an

iterated expectations argument, conditioning on X,

E
h
Yi (d1; d2)� P̂i (d1; d2; �o) jX

i
= H(V );

a function of index values. If the trimming function were not present or if it depended

on the index, the gradient would now have zero expectation. Our solution is to design

a two-stage estimator where parameter estimates from the �rst stage are used to

construct the index and then index trimming is employed in the second stage.

Second, while index trimming makes a bias reduction argument possible for the

gradient, it poses a problem for the consistency argument. In particular, index trim-

ming provides no protection for small denominators and hence makes uniform conver-

gence di¢ cult to establish. To resolve this problem, we use the adjusted probabilities

in (D5, D6) so that denominators are kept away from zero, while the estimated prob-

ability still goes rapidly to the truth in gradient expression. In this manner, we

are able to establish consistency without X-trimming while at the same time taking

advantage of index trimming at the gradient level where bias reduction is important.

Third, it would seem desirable, if possible, to speed up the rate at which estimated

probabilities converge to the truth. Indeed, it turns out that faster convergence is

critical to the normality argument. The di¢ culty here, which is typically encountered

in estimating semiparametric models using optimization methods, is that a window

choice is made before any optimization. This same window must then be employed

to show that estimated densities and their derivatives converge appropriately to the
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corresponding true values. To accomplish all of these objectives, estimated probabil-

ities are based on a suboptimal window choice. To solve this problem, in (D9), after

we obtain the second stage estimator under index trimming, we adjust the result-

ing estimator. In an argument sketched out below and proved in the Appendix, we

show that the adjusted estimator behaves like one with di¤erent optimal windows for

di¤erent components of the problem.

To sketch out the intuition for this adjustment, recalling (D9) we �rst consider

the infeasible estimator:

�̂
o

in = �̂
� � Ĥ� ��+��1 Ĉ (�o) :

With the gradient for �̂
�
given as:

Ĝ� (�0) �
1

N

NX
i=1

X
d1;d2

h
Yi (d1; d2)� P̂ �i (d1; d2; �o)

i
�̂
�
i (d1; d2; �o) � iv; (8)

the second stage estimator �̂
�
has the standard Taylor series form:

�
�̂
� � �o

�
= �Ĥ� ��+��1 Ĝ� (�0) ;

It then follows that:

�
�̂
o

in � �o

�
= �Ĥ� ��+��1 Ĝo (�0) ; (9)

Ĝo (�0) � 1

N

NX
i=1

X
d1;d2

h
Yi (d1; d2)� P̂ oi (d1; d2; �o)

i
�̂
�
i (d1; d2; �o) � iv:

Notice that now the estimated probability is evaluated at an optimal window. The
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feasible counterpart of the above estimator is given as:

�̂
o � �̂

� � Ĥ
�
�̂
���1

Ĉ
�
�̂
��
:

In the Appendix, we show that the feasible and infeasible estimators are asymptoti-

cally equivalent.

In the remainder of this section, we provide the main asymptotic results in several

theorems below. Each theorem will depend on a number of intermediate results,

which we state and prove as Lemmas in the Appendix. Theorem 1 below provides

consistency and identi�cation results. Theorem 2 provides the normality result using

regular kernels throughout.

Theorem 1 (Consistency). For both binary selection and binary treatment

models, assume that V2 contains a continuous variable that is excluded from V1. In

addition, assume that each index satis�es the identifying assumptions required for

single index models5. Then, under (A1-4) and (D1-9):

�̂
p! �o; �̂

� p! �o; �̂
o p! �o

Proof. We provide the proof for �̂
�
, with the arguments for the other estimators

being very similar. Lemmas 2-3 prove that we can replace the P̂ � in the objective

function L̂�(�), and obtain L�(�) satisfying:

sup
�

���L̂�(�)� L�(�)
��� p! 0:

5See, for example, Ichimura (1993) or Klein and Spady (1993).

21



From Lemma 4, we may ignore the probability adjustments �̂0s and therefore replace

adjusted probabilities P � in L�(�) with unadjusted ones P . With L(�) as the resulting

objective function:

sup
�
jL�(�)� L(�)j p! 0:

From conventional uniform convergence arguments:

sup
�
jL(�)� E [L(�)]j p! 0:

To complete the argument, we must show that E [L(�)] is uniquely maximized

at �o: From standard arguments, �o is a maximum, and the only issue is one of

uniqueness. With �� as any potential maximizer, it can be shown that:

1) Pr(Y1 = 1jY2 = 1; V1 (��1) ; V2 (��2)) Pr(Y2 = 1jV2 (��2)) =

Pr(Y1 = 1jY2 = 1; V1 (�1o) ; V2 (�2o)) Pr(Y2 = 1jV2 (�2o))

2) Pr(Y1 = 0jY2 = 1; V1 (��1) ; V2 (��2)) Pr(Y2 = 1jV2 (��2)) =

Pr(Y1 = 0jY2 = 1; V1 (�1o) ; V2 (�2o)) Pr(Y2 = 1jV2 (�2o)):

Summing (1) and (2):

Pr(Y2 = 1jV2 (��2)) = Pr(Y2 = 1jV2 (�2o)):

Under identifying conditions for single index models, ��2 = �2o. Turning to the remain-
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ing index, from (1):

Pr(Y1 = 1jY2 = 1; V1 (�1o) ; V2 (�2o)) = Pr(Y1 = 1jY2 = 1; V1 (��1) ; V2 (�2o)):

Solving the �rst probability function for V1 (�1o) ; for some function M we have:

V1 (�1o) =M(V1 (�
�
1) ; V2 (�2o)):

Since V2 contains a continuous variable not contained in V1, di¤erentiating both sides

with respect to this variable yields:

0 = rv2M )M(V1 (�
�
1) ; V2 (�2o)) = G (V1 (�

�
1)) = V1 (�1o) :

Identi�cation now follows from conditions that identify single index models.

Theorem 2 (Normality). With L (�) as the limiting likelihood de�ned in The-

orem 1 and with H as its hessian matrix, de�ne Ho � EH (�o) : Recall that the

likelihood components were de�ned so as to be able to cover both binary selection

and binary treatment models. Then, with �̂
o
as the estimator de�ned in (D9) for

these models and under (A1-4) and (D1-9):

p
N
h
�̂
o � �o

i
d! Z~N(0;�H�1

o ):

Proof. Having established convergence rates for �̂
�
in Lemma 9, we next show

that the adjustment factor in the adjusted estimator de�ned in (D9) simpli�es in
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that:

� � Ĥ
�
�̂
�� h

B̂o
�
�̂
��� B̂�

�
�̂
��i � Ĥ

�
�+
� h
B̂o (�o)� B̂� (�o)

i
= op(N

�1=2):

Rewriting the above expression, � � �1 +�2, where:

�1 �
h
Ĥ
�
�̂
��� Ĥ

�
�+
�i h

B̂o
�
�̂
��� B̂�

�
�̂
��i

�2 � Ĥ
�
�+
� h�

B̂o
�
�̂
��� B̂o (�o)

�
�
�
B̂�
�
�̂
��� B̂� (�o)

�i
:

The �rst term of �1 is Op
�

1p
Nh

�
, which follows from the above convergence rate on

�̂
�
and Lemma 1. The second term of �1 is O(h2) from the convergence rate on �̂

�

and Lemma 5. Therefore, �1 = op(1=
p
N): For �2; the hessian component is Op(1)

from Lemma 1: Taylor expanding the second term of �2 :

�
B̂o
�
�̂
��� B̂o (�o)

�
�
�
B̂�
�
�̂
��� B̂� (�o)

�
=

h
rB̂o

�
�̂
+
�
�rB̂�

�
�̂
+
�i�

�̂
� � �o

�
; �̂

+
�
h
�̂
�
; �o

i
:

Both gradient terms are Op( 1p
Nh3
) from Lemma 1. Since from above:

�
�̂
� � �o

�
=

Op (h
4) ; we have �2 = op

�
1=
p
N
�
:

Since the estimator based on the feasible adjustment factor is asymptotically

equivalent to that based on the infeasible adjustment, we will complete the argu-
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ment by analyzing the infeasible estimator. From (9):

�
�̂
o

in � �o

�
= �Ĥ� ��+��1 hÂ� B̂o

i
Â =

1

N

NX
i=1

X
d1;d2

[Yi (d1; d2)� Pi (d1; d2; �o)] �̂
�
i (d1; d2; �o) � iv

B̂o =
1

N

NX
i=1

X
d1;d2

h
P̂ oi (d1; d2; �o)� Pi (d1; d2; �o)

i
�̂
�
i (d1; d2; �o) � iv:

From Lemma 6:

Â =
1

N

NX
i=1

X
d1;d2

[Yi (d1; d2)� Pi (d1; d2; �o)] �i (d1; d2; �o) � iv + op(N
�1=2)

where �i (d1; d2; �o) is the probability limit of �̂
�
i (d1; d2; �o) :

It can be shown that:6

B̂o = Bo+op(N
�1=2); Bo =

1

N

NX
i=1

X
d1;d2

h
P̂ oi (d1; d2; �o)� Pi (d1; d2; �o)

i
�i (d1; d2; �o) � iv:

Lemma 8b shows that B̂o
1 is a centered U-statistic and proves that B̂

o
1 = op(1=

p
N):

The theorem now follows.
6From above, with P̂ � in place of P̂ 0; we showed that

B̂� = B� +Op

�
N� 4

8+�

�
; � > 0:

For the faster convergence rate on P̂ 0; from a similar argument the result follows.
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6 Simulation Evidence

We now consider the �nite sample performance of the estimator in four di¤erent

models. These di¤er according to whether the model is threshold-crossing or not and

according to whether there is binary treatment or sample selection. The �rst model

we consider is a binary treatment model with additive non-normal errors:

Y1 = IfX1 +X3 + Y2 + "i > c1g

Y2 = IfX2 �X3 + vi > c2g

where the errors are generated as:

vi s �2(1)

"i = vi + z, z s N(0; 1):

and rescaled to each have variance 1. The variables X1 and X2 are standard normals,

while X3 is a binary variable with probability .5 and support {0,1}. The constants

c1 and c2 are set so that the marginal probability for each dependent variable is .5.

In a second model, the treatment e¤ect and the errors enter in a non-additive

manner giving a non-threshold-crossing structure. More explicitly:

Y1 = If(X1 +X3) � (1 +mY2 + s1"i) > &1g

Y2 = If(X2 �X3) � (1 + s2vi) > &2g

where the variables are generated as in the �rst model. Notice that in the second

26



equation the error enters as (X2 �X3)s2vi which may be viewed as an error compo-

nent with non-constant variance. We set the scaling constant s2 so that the average

variance of this component is one as in the �rst model. We set the scaling factor s1

similarly. In the �rst equation, the marginal impact of Y2 is not constant. We set

the constant m so that the average marginal impact is the same as that in the �rst

model. Finally &1 and &2 are set to give probabilities close to .5.

The above two models have a binary endogenous treatment component. As an

alternative to this component, each of the above models can have a sample selection

structure. In this case, the threshold-crossing model with sample selection is given

as:

Y1 = IfX1 +X3 + "i > c1g if Y2 = 1

Y2 = IfX2 �X3 + vi > c2g

where the variables, errors and constants are set as above.

Similarly, the non-threshold-crossing model with sample selection is given as:

Y1 = If(X1 +X3) � (1 + s1"i) > &1g if Y2 = 1

Y2 = If(X2 �X3) � (1 + s2vi) > &2g:

All other aspects of the model are as above.

For all four models, we set N = 1000 and conduct 1000 replications. To obtain

starting values, we treat both models as if they were linear and then employ an IV

estimator appropriate for this case. One might expect such starting values to be better
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for the �rst model than for the second, which was indeed the case. Nevertheless, as

discussed below, the �nal estimates for both models are quite good.

To evaluate the performance of the estimator proposed here we compare it with

two alternative estimators. The �rst is the "MLE estimator" which is based on joint

normality and which assumes a threshold structure. The second is an estimation

procedure which employs the appropriate higher order kernels to achieve the appro-

priate bias reduction. We acknowledge that the "MLE estimator" is not appropriate

for the non-threshold-crossing model even when the errors are normal. Nevertheless,

we report it as this is the procedure frequently employed in situations where one

observes binary treatments in models with binary outcomes. To further investigate

the performance of bias reducing mechanisms in our estimator, we provide evidence

on the bias reductions gained in each step of estimation.

Table 1 presents the estimates for these various estimators for the threshold-

crossing model with binary treatment outlined above. For each of the estimates we

report the bias, the standard error and the root square mean error. This provides the

reader with not only some indication of the bias reduction but also the implications of

the various bias reduction methods for the accuracy of the estimators. As the "MLE

estimators" identify additional parameters, there is a di¤erent number of results for

this estimator. Note that the estimates for the constants are not reported for the

probit estimator although they are identi�ed and were estimated jointly with the

other parameters.

Beginning with the "MLE estimator" results in Table 1, we �nd that the bias is

very large in the Y2 model with both coe¢ cients displaying a bias in the order of 20

percent. The bias which appears in the main equation is less severe and is in the
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order of 10 percent or less. This almost certainly re�ects the "smaller" departure

from normality in the main equation error. Finally, we note that the variance for the

estimated coe¢ cient on Y2 is very large in both absolute magnitude and relative to

all other estimates.

Next we report the estimates obtained by the use of higher order kernels.7 Given

the nature of the estimator, we identify and estimate the ratio of the coe¢ cients. The

performance of the estimators is remarkably poor. For the reduced form the bias is 15

percent while for the main equation it is 42 percent. In both cases, the variances are

also large. Unlike the other estimators studied here, there are convergence problems

speci�c to this higher order kernel estimator. We therefore use a series of grid searches

to obtain a maxima for this particular estimator.

The remainder of this table reports the performance of the various stages of our

estimator. Note that the use of regular kernels with X trimming provides estimates

with much smaller bias and variance compared to those based on higher kernels. The

bias is around 7.5 percent in the reduced form and 12 percent in the main equation.

This decreases dramatically however when we re-estimate the model and trim on

the basis of the estimated indices. The bias is now 3.3 and 4.1 percent respectively.

Finally the bias in the estimates after the smoothing adjustment is even smaller.

Also note that this substantial reduction in bias is not associated with an increase

in estimator variability. In all stages, the variances are relatively small, being on the

order of 7% or less.

Table 2 reports the estimates from the non-threshold-crossing model. As expected

the estimates for the "MLE estimator" are extremely poor in terms of bias and

7The higher order kernels are from Muller (1984), Table 1 for densities with smoothing parameter
� = 3: and with kernel parameter k = 4 in the single index case and k = 6 in the double index case.

29



variance. This highlights the danger in employing MLE with additive structures

unless there is some reason to suspect this is indeed the appropriate model for the

data. Once again the estimates based on higher kernels are very biased and have

large variances. In contrast, the estimates based on the bias adjustments continue to

perform well in this non additive setting. The bias, which is never large, is signi�cantly

reduced at each stage. The trimming on the estimated indices almost reduces the bias

by half, while the smoothing adjustment further reduces bias by a noticeable amount.

In all stages, the variances remain small, being lower than 7%.

Table 3 provides results for the threshold-crossing model with sample selection.

The MLE estimates are poor in terms of bias and variability and those based on higher

order kernels are also problematic. In contrast to the results in Table 1, the estimates

based on X-trimming for the main equation are very poor with a bias of 31 percent.

However, there is a substantial reduction in bias when we trim on the estimated

indices. More explicitly, Table 3 reveals that the index-trimming estimates have

biases of 4.3 and 2.7 percent respectively. The �nal round of bias adjustments further

improves the estimates to biases of 3.7 and 1.8 percent respectively. As expected, the

variances with sample selection are somewhat larger than without. However, they

remain small, being less than 10%.

Finally, Table 4 reports results for the non-threshold-crossing model with sample

selection. The results are generally of the same �avor as those above. Namely, the

MLE estimators work poorly when their required assumptions are not satis�ed. Also,

the procedure based on higher order kernels does poorly. As with the earlier tables,

the bias reducing methods work well. While the largest reduction in bias is due to the

use of index trimming, the �nal bias corrections signi�cantly reduce the bias further.
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In summary, in all cases our estimator does much better than the "MLE estimator"

and the higher order kernel based estimator in terms of both bias and variance. In

terms of the bias control mechanisms that we employ, index trimming provides the

largest bias reduction. The �nal smoothing adjustment further decreases the bias,

most noticeably in the non-threshold-crossing models.

7 Conclusions

In conclusion, in this paper we have examined a class of triangular joint binary models

where threshold crossing assumptions need not hold. We propose an estimator based

on regular kernels with bias control mechanisms and show that the estimator is con-

sistently and asymptotically distributed as normal. While retaining these desirable

large sample properties, the Monte Carlo results show that our estimator performs

very well in �nite samples

While we have provided these results for a triangular model, the (a) double

index formulation can be extended to a more general model (under appropriate as-

sumptions) with each binary variable depending on the other.
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Threshold Crossing Model

Equation Parameter Bias Root Var RMSE

Probit Reduced Form Coef(X1) 0.097 0.078 0.125

Coef(X3) 0.081 0.127 0.151

Primary Coef(Y2) 0.050 0.274 0.278

Coef(X1) 0.197 0.100 0.221

Coef(X2) -0.242 0.083 0.256

Rho -0.084 0.136 0.160

Higher-order Kernels Reduced Form Ratio31 -0.417 0.300 0.513

Primary Ratio21 -0.148 0.292 0.327

X-trimming Reduced Form Ratio31 -0.119 0.072 0.140

Primary Ratio21 -0.074 0.053 0.091

Index-trimming Reduced Form Ratio31 -0.042 0.072 0.083

Primary Ratio21 -0.033 0.045 0.055

Adjusted Reduced Form Ratio31 -0.038 0.074 0.083

Primary Ratio21 -0.021 0.044 0.049
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Non-threshold Crossing Model

Equation Parameter Bias Root Var RMSE

Probit Reduced Form Coef(X1) 0.211 0.085 0.227

Coef(X3) 0.227 0.093 0.245

Primary Coef(Y2) 0.145 0.177 0.229

Coef(X1) 2.077 0.224 2.090

Coef(X2) -2.075 0.214 2.086

Rho -1.280 0.146 1.288

Higher-order Kernels Reduced Form Ratio31 -0.317 0.355 0.476

Primary Ratio21 -0.178 0.389 0.428

X-trimming Reduced Form Ratio31 0.130 0.067 0.146

Primary Ratio21 -0.050 0.039 0.064

Index-trimming Reduced Form Ratio31 -0.078 0.066 0.102

Primary Ratio21 -0.026 0.035 0.043

Adjusted Reduced Form Ratio31 -0.061 0.067 0.091

Primary Ratio21 -0.015 0.034 0.037
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Partial Threshold Crossing Model

Equation Parameter Bias Root Var RMSE

Probit Reduced Form Coef(X1) 0.289 0.115 0.311

Coef(X3) 0.289 0.183 0.342

Primary Coef(Y2) -0.758 0.129 0.769

Coef(X1) 0.194 0.099 0.218

Coef(X2) -0.239 0.083 0.253

Rho -0.357 0.230 0.425

Higher-order Kernels Reduced Form Ratio31 -0.345 0.358 0.497

Primary Ratio21 -0.172 0.336 0.377

X-trimming Reduced Form Ratio31 -0.315 0.084 0.326

Primary Ratio21 0.062 0.050 0.080

Index-trimming Reduced Form Ratio31 -0.044 0.094 0.104

Primary Ratio21 -0.027 0.045 0.052

Adjusted Reduced Form Ratio31 -0.038 0.095 0.103

Primary Ratio21 -0.018 0.044 0.048
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Partial Non-Threshold Crossing Model

Equation Parameter Bias Root Var RMSE

Probit Reduced Form Coef(X1) 0.672 0.165 0.692

Coef(X3) 0.648 0.195 0.676

Primary Coef(Y2) -3.460 0.286 3.472

Coef(X1) 2.051 0.227 2.064

Coef(X2) -2.045 0.216 2.056

Rho -1.184 0.297 1.221

Higher-order Kernels Reduced Form Ratio31 -0.208 0.362 0.417

Primary Ratio21 -0.145 0.374 0.401

X-trimming Reduced Form Ratio31 -0.129 0.082 0.153

Primary Ratio21 -0.056 0.040 0.069

Index-trimming Reduced Form Ratio31 -0.080 0.080 0.113

Primary Ratio21 -0.031 0.035 0.047

Adjusted Reduced Form Ratio31 -0.063 0.082 0.104

Primary Ratio21 -0.019 0.034 0.039
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8 Appendix

The appendix provides the intermediate lemmas employed in proving the main theo-

rems. We begin with a basic lemma that provides uniform convergence rates.

With V2 having conditional density g2 (v2jY = d2) supported on [a2(d2); b2(d2)] ;

and V having conditional density g (vjY1 = d1; Y2 = d2) supported on [ak (dk) ; bk (dk)] ;

k = 1; 2; " > 0; de�ne:

V2N = fv2 : a2(d2) + h1�"m < v2 < b2(d2)� h1�"m g (10)

VN = f(v1;v2) : ak (dk) + h1�"c < vk < bk (dk)� h1�"c g (11)

Lemma 1 (Uniform Convergence). For  any continuous function of �, let

rp
� ( ) be the p

th partial derivative of  with respect to �; r0
� ( ) �  : Let f̂2 and

f̂ be the estimators in (D!) with respective probability limits f2 and f: Then, for �

in a compact set, t2�V2N as de�ned in 10, t�VN as de�ned in 11, the following rates
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hold for p = 0; 1; 2:

a) : sup
t2;�

���rp
�

�
f̂2 (t2; d2)

�
� rp

� (f2 (t2; d2))
��� = Op

�
min

�
h2m;

1p
Nhp+1m

��
b) : sup

t;�

���rp
�

�
f̂ (t; d1; d2)

�
� rp

� (f (t; d1; d2))
��� = Op

�
min

�
h2c ;

1p
Nhp+2c

��
:

Proof. As the proof is standard for density estimators, we outline it below for

case a). Write:

���rp
�

�
f̂2 (t2; d2)

�
� rp

� (f2 (t2; d2))
��� � �1 +�2;

�1 �
���rp

�

�
f̂2 (t2; d2)

�
� Erp

�

�
f̂2 (t2; d2)

����
�2 �

���Erp
�

�
f̂2 (t2; d2)

�
� rp

� (f2 (t2; d2))
��� :

From Klein (1993), �1 = Op

�
1p

Nhp+2m

�
.

For �2, with  2(v2jY2 = 1) as the conditional density of v2 conditioned on Y2 = 1,

write

Erp
�

�
f̂2 (t2; d2)

�
= rp

�E
�
f̂2 (t2; d2)

�
= Pr (Y2 = d2)rp

�

Z b2(d2)

a2(d2)

1

hm
K

�
t2 � v2
hm

�
 2(v2jY2 = 1)dv2

= Pr (Y2 = d2)rp
�

Z (b2(d2)�t2)=hm

(a2(d2)�t2)=hm
K (z) 2(t2 + hmzjY2 = 1)dz:
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De�ne:

C0(t2; d2) =

Z (b2(d2)�t2)=hm

(a2(d2)�t2)=hm
K (z) dz; C1(t2; d2) =

Z (b2(d2)�t2)=hm

(a2(d2)�t2)=hm
zK (z) dz.

Then, from a Taylor series expansion of  2(t2 + hmzjY2 = 1) in hm about hm = 0:

Erp
�

�
f̂2 (t2; d2)

�
= rp

� Pr (Y2 = d2) 2 (t2)C0(t2; d2) + hmrp
� Pr (Y2 = d2) 

0
2 (t2)C1(t2; d2) +O

�
h2m
�

= rp
�f2 (t2; d2)C0(t2; d2) + hmrp

� Pr (Y2 = d2) 
0
2 (t2)C1(t2; d2) +O

�
h2m
�

For t2 � V2N , C0(t2; d2) and C1(t2; d2) converge uniformly in t2 to 1 and 0 respectively

faster than h2m: The lemma now follows.

The next two lemmas prove that the estimated second-stage objective function

L̂� (�) is uniformly close to L� (�). Lemma 2 proves this result when indices are

restricted to be smoothly in VN while Lemma 3 establishes this result for indices

smoothly restricted to be in the complement of VN .

Lemma 2. Referring (D3), de�ne a smoothed indicator restricting vi to VN in

11 as:

l (vi) �
Y
k

� [ak (dk) + h1�"ck ; vki]� [vki; bk (dk)� h1�"ck ]:

Then:

sup
�
jL̂�g(�)� L�g(�)j = op(1);
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L̂�g(�) =
1

N

X
i

X
d1;d2

Yi (d1; d2)Ln
h
P̂ �i (d1; d2; �)

i
l (vi)

L�g(�) =
1

N

X
i

X
d1;d2

Yi (d1; d2)Ln [P
�
i (d1; d2; �)] l (vi) :

Proof. In L̂�g(�); Taylor expand Ln(P̂
�
i ) about Ln(P

�
i ) to obtain:

L̂�g(�)� L�g(�) =
1

N

X
i

X
d1;d2

Yi (d1; d2)
1

P̂+i

h
P̂ �i (d1; d2; �)� P �i (d1; d2; �)

i
l (vi) ;

where P̂+i is inside the interval between P̂ �i ; P
�
i : If P̂

�
i (d1; d2; �) � P �i (d1; d2; �) is

uniformly close to zero, and P �i (d1; d2; �) is uniformly bounded away from zero, the

proof follows. We next show that P̂ �i (d1; d2; �) � P �i (d1; d2; �) is uniformly close to

zero. Denote:

P̂ �m = P̂ � (Y2i = d2jV2i = t2) � f̂ �2 (t2; d2) =ĝ
�
2 (t2; d2) where ĝ

�
2 (t2; d2) �

1X
d2=0

f̂ �2 (t2; d2) ;

P̂ �c = P̂ � (Y1i = d1jY2i = d2; Vi = t) � f̂ � (t; d1; d2) =ĝ
� (t; d1; d2) where ĝ� (t; d1; d2) �

1X
d1=0

f̂ � (t; d1; d2) ;

P �m � p lim P̂ �m; P
�
c � p lim P̂ �c

Then, in the selection model with d2 = 0 write:

P̂ �i (d1; d2; �)� P �i (d1; d2; �) = (P̂
�
m � P �m)
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Otherwise:

P̂ �i (d1; d2; �)� P �i (d1; d2; �) = P̂ �mP̂
�
c � P �mP

�
c

= (P̂ �m � P �m)(P̂
�
c � P �c ) + (P̂

�
m � P �m)P

�
c + P �m(P̂

�
c � P �c )

As the analysis for all of these terms is similar, here we focus on (P̂ �m�P �m):This term

itself is comprised of several similar components, one of which from (D5) is given as:

jf̂ �2 (t2; d2)� f �2 (t2; d2) j
ĝ�2 (t2; d2)

� jf̂2 (t2; d2)� f2 (t2; d2) j
ĝ�2 (t2; d2)

+
j�̂2 ��2j
ĝ�2 (t2; d2)

Because of the �-terms de�ned in (D5) inf ĝ�2 (t2; d2) > h
1=2
m . Therefore, from Lemma

1, the �rst term above converges in probability to 0. A similar argument applies to

the second term.

Lemma 3. With l (vi) de�ned in Lemma 2, then:

sup
�
jL̂�b(�)� L�b(�)j = op(1);

L̂�b(�) =
1

N

X
i

X
d1;d2

Yi (d1; d2)Ln[P̂
�
i (d1; d2; �)][1� l (vi)]

L�b(�) =
1

N

X
i

X
d1;d2

Yi (d1; d2)Ln [P
�
i (d1; d2; �)] [1� l (vi)]

Proof. Write:

jL̂�b(�)� L�b(�)j � jL̂�b(�)j + jL�b(�)j
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For the second term:

jL�b(�)j � sup
i;�

�����X
d1;d2

Yi (d1; d2)Ln [P
�
i (d1; d2; �)]

����� sup� 1

N

X
i

[1� l (vi)]

From Klein and Spady (1993, footnote 14), inf P �i (d1; d2; �) is bounded away from 0.

Therefore, the �rst term above is �nite. The second term converges in probability to

zero.

For L̂�b(�);we will show that inf P̂
�
i (d1; d2; �) > 0 and then employ the same argu-

ment above to complete the proof. With

P̂ �i (d1; d2; �) =

�
P̂ �m
P̂ �mP̂

�
c

in the selection model with d2 = 0

otherwise
;

each of these components converges to a �nite quantity that is bounded away from

zero. With the argument for each component being the same, here we consider P̂ �m.

From the proof of Lemma 1 and employing the notation introduced therein:

P̂ �m �
z (t2; d2)P
d2

z (t2; d2)
= op(1), where z (t2; d2) � f2 (t2; d2)C0(t2; d2) + �2(d2):

Letting �C = max
d2
(C0(t2; d2)), � = C0(t2; d2)= �C, and ��

2(d2) = �2(d2)= �C :

z (t2; d2)P
d2

z (t2; d2)
>

z (t2; d2)P
d2

�
f2 (t2; d2) �C +�2(d2)

�
=

�f2 (t2; d2) + �
�
2(d2)P

d2

[f2 (t2; d2) + ��
2(d2)]

:
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Since f2 (t2; d2) = Pm
P

d2
f2 (t2; d2) :

Pm�f2 (t2; d2) + �
�
2(d2)

f2 (t2; d2) + Pm
P
d2

��
2(d2)

>
(Pm�) f2 (t2; d2) + �

�
2(d2)

f2 (t2; d2) +
P
d2

��
2(d2)

:

With 0 < Pm� < 1 behaving as a probability, from Klein and Spady (1993, footnote

14) the above quantity is �nite and bounded away from zero. The lemma then follows.

The next lemma proves that we may ignore the probability adjustments �̂0s in

the adjusted likelihood, L�, and therefore replace adjusted probabilities P � in L� with

unadjusted ones P .

Lemma 4. Referring to (D8), for � in a compact set:

sup
�
jL�(�)� L(�)j p! 0

Proof. The proof is identical to the argument in Lemmas 2-3 and follows di-

rectly by establishing this result on both sets away from support boundaries and "low

probability" sets near the boundaries.

To establish asymptotic normality, we require convergence rates for gradient and

hessian components of the relevant estimated likelihoods. These rates are provided

in Lemma 5 below.

Lemma 5. (Pointwise Convergence). For  any pth di¤erentiable function

of �, let rp
� ( ) be the p

th partial derivative of  with respect to �; r0
� ( ) �  : Let

f̂2 and f̂ be the estimators in (D!) with respective probability limits f2 and f: Then,

for � in a compact set, t2�V2N as de�ned in 10, t�VN as de�ned in 11, the following
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rates hold for p = 0; 1; 2:

a) :
���rp

�

�
f̂2 (t2; d2)

�
� rp

� (f2 (t2; d2))
��� = Op

 
min

"
h2m;

1p
Nh2p+1m

#!

b) :
���rp

�

�
f̂ (t; d1; d2)

�
� rp

� (f (t; d1; d2))
��� = Op

 
min

"
h2c ;

1p
Nh2p+2c

#!

Proof. As the proof is standard, we outline it below for case a). Write:

E
h
rp
�

�
f̂2 (t2; d2)

�
� rp

� (f2 (t2; d2))
i2
� �1 +�2;

�1 �
h
rp
�

�
f̂2 (t2; d2)

�
� Erp

�

�
f̂2 (t2; d2)

�i2
�2 �

h
Erp

�

�
f̂2 (t2; d2)

�
� rp

� (f2 (t2; d2))
i2

For�1; this variance calculation is standard (e.g. see Silverman (1986)). For the bias

calculation in �2, the argument is identical to that for the uniform case in Lemma 1.

The rate is then given by the minimum of the square roots of how fast �1 and �2

converge to zero, which completes the lemma.

To establish asymptotic normality for the adjusted estimator, it is useful to have

a rate of convergence for �rst and second stage estimators. The following lemma is

important in this regard as it provides a convergence rate for one of the gradient

components of the estimators being studied here.

Lemma 6. For �̂ = �̂ v or �̂x; referring to (D9), with
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�̂
�
(d1; d2; �o) � r�P̂

�
i (d1; d2; �o)=P̂

�
i (d1; d2; �o)

�̂ (d1; d2; �o) � r�P̂i(d1; d2; �o)=P̂i(d1; d2; �o)

Â� � 1

N

NX
i=1

X
d1;d2

[Yi (d1; d2)� Pi (d1; d2; �o)] �̂
�
i (d1; d2; �o) �̂

Â � 1

N

NX
i=1

X
d1;d2

[Yi (d1; d2)� Pi (d1; d2; �o)] �̂i (d1; d2; �o) �̂

then

Â� � A = op(N
�1=2)

Â� A = op(N
�1=2)

where

A � 1

N

NX
i=1

X
d1;d2

[Yi (d1; d2)� Pi (d1; d2; �o)] �i (d1; d2; �o) �

Proof. Using Lemma 5 and Lemma 2.18 from Pakes and Pollard (1989), Klein

and Shen (2009) establishes this result for single index models. The argument extends

to double index models.

Using Lemma 6, Lemma 7 provides a useful convergence rate for the initial esti-

mator.

Lemma 7. For �̂ de�ned in (D8) and with h = O(N�r); r = 1
8+�

:

�
�̂ � �o

�
= Op(h

2):

47



Proof. From a Taylor series expansion:

�
�̂ � �o

�
= �Ĥ

�
�+
��1 1

N

NX
i=1

X
d1;d2

h
Yi (d1; d2)� P̂i (d1; d2; �o)

i
�̂i (d1; d2; �o) � ix = �Ĥ

�
�+
��1 h

Â� B̂
i
;

Â =
1

N

NX
i=1

X
d1;d2

[Yi (d1; d2)� Pi (d1; d2; �o)] �̂i (d1; d2; �o) � ix;

B̂ =
1

N

NX
i=1

X
d1;d2

h
P̂i (d1; d2; �o)� Pi (d1; d2; �o)

i
�̂i (d1; d2; �o) � ix

Referring to Lemma 6, since A = Op(N
�1=2), Â = Op(N

�1=2): From Lemma 5,

B̂ = Op(h
2), which completes the argument.

To obtain a convergence rate for the second-stage estimator and to analyze the

�nal bias-adjusted estimator, Lemma 8 shows that the gradient component which is

responsible for the bias in the estimator vanishes in probability.

Lemma 8. De�ne:

a) : B� =

p
N

N

NX
i=1

X
d1;d2

h
P̂ �i (d1; d2; �o)� Pi (d1; d2; �o)

i
�i (d1; d2; �o) � iv = op(1)

b) : Bo =

p
N

N

NX
i=1

X
d1;d2

h
P̂ oi (d1; d2; �o)� Pi (d1; d2; �o)

i
�i (d1; d2; �o) � iv = op(1)

Proof. For a), under index trimming the adjustment factors within P̂ �i vanish

exponentially. Therefore:

B� = B + op(1); B =

p
N

N

NX
i=1

X
d1;d2

h
P̂i (d1; d2; �o)� Pi (d1; d2; �o)

i
�i (d1; d2; �o) � iv
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Denote:

P̂m = P̂ (Y2i = d2jV2i = t2) � f̂2 (t2; d2) =ĝ2 (t2; d2) where ĝ2 (t2; d2) �
1X

d2=0

f̂2 (t2; d2) ;

P̂c = P̂ (Y1i = d1jY2i = d2; Vi = t) � f̂ (t; d1; d2) =ĝ (t; d1; d2) where ĝ (t; d1; d2) �
1X

d1=0

f̂ (t; d1; d2) ;

Pm � p lim P̂m; Pc � p lim P̂c

then, in the selection model with d2 = 0 write:

P̂i (d1; d2; �)� Pi (d1; d2; �) = (P̂m � Pm)

Otherwise:

P̂i (d1; d2; �)� Pi (d1; d2; �) = P̂mP̂c � PmPc

= (P̂m � Pm)(P̂c � Pc) + (P̂m � Pm)Pc + Pm(P̂c � Pc)

Since the argument for the �rst case is similar and easier, here we focus on the second

case. In that case, we can rewrite B term as:

B =

p
N

N

NX
i=1

X
d1;d2

h
(P̂m � Pm)(P̂c � Pc) + (P̂m � Pm)Pc + Pm(P̂c � Pc)

i
�i (d1; d2; �o) � iv

For the �rst term in B, from Lemma 4, for any given d1; d2:vuut 1

N

NX
i=1

(P̂m � Pm)2 = Op(N
�2rm);

vuut 1

N

NX
i=1

(P̂c � Pc)2 = Op(N
�2rc)
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From Cauchy�s inequality:

p
N

N

NX
i=1

X
d1;d2

h
(P̂m � Pm)(P̂c � Pc)

i
�i (d1; d2; �o) � iv =

p
NOp(N

�2(rm+rc))

Recalling that rm = 1
6+�

and rc = 1
8+�

; set � such that rm + rc > 1=4: Then, the term

above vanishes in probability.

The second term in B is given by:

B2 =

p
N

N

NX
i=1

X
d1;d2

"
(
f̂2 (t2; d2)

ĝ2 (t2; d2)
� Pm)Pc

#
�i (d1; d2; �o) � iv

With:

U =

p
N

N

NX
i=1

X
d1;d2

"
(
f̂2 (t2; d2)

ĝ2 (t2; d2)
� Pm)Pc

# �
ĝ2 (t2; d2)

g2 (t2; d2)

�
�i (d1; d2; �o) � iv;

employing the same "double-convergence" argument used on the �rst term it can be

shown that:

B2 = U + op(1):

Note that

U =

p
N

N

NX
i=1

X
d1;d2

h
(f̂2 (t2; d2)� ĝ2 (t2; d2)Pm)Pc

i ��i (d1; d2; �o) � iv
g2 (t2; d2)

�

is a centered U-Statistic, which vanishes in probability from standard projection ar-

guments. The third term in B has the same structure as the second and therefore

also vanishes in probability, which completes the proof.
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Lemma 9. Referring to (D5), for the second stage estimator:

����̂� � �o

��� = Op

�
N� 4

8+�

�
:

Proof. From Lemma 7, the initial estimator satis�es:
�
�̂ � �o

�
= Op (N

�2r).

For the estimator based on index trimming, from a standard Taylor series argument

and employing the form for the gradient in (8) with � iv replacing � ix :

�
�̂
� � �o

�
= �Ĥ� ��+��1 hÂ� � B̂�

i
;

Â� =
1

N

NX
i=1

X
d1;d2

[Yi (d1; d2)� Pi (d1; d2; �o)] �̂
�
(d1; d2; �o) � iv;

B̂� =
1

N

NX
i=1

X
d1;d2

h
P̂ �i (d1; d2; �o)� Pi (d1; d2; �o)

i
�̂
�
(d1; d2; �o) � iv

Referring to Lemma 6, since A = Op(N
�1=2), Â� = Op(N

�1=2).

For the B̂�-term, with �Bi � [�̂
�
(d1; d2; �o) � iv � � (d1; d2; �o) � iv]:

B̂� = B�
1 + B̂�

2 ;

B�
1 =

1

N

NX
i=1

X
d1;d2

h
P̂ �i (d1; d2; �o)� Pi (d1; d2; �o)

i
� (d1; d2; �o) � iv

B̂�
2 =

1

N

NX
i=1

X
d1;d2

h
P̂ �i (d1; d2; �o)� Pi (d1; d2; �o)

i
�Bi

By showing that B̂�
1 is close in probability to a centered U-statistic, Lemma 8, part

a) proves that B�
1 = op

�
N�1=2� :From Cauchy�s inequality, the convergence rates in
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Lemma 5, convergence rates on indicators arbitrarily close to
p
N (see Klein and

Spady (1993)), and with window parameters r = r� = 1
8+�

: B̂�
2 = Op

�
N� 4

8+�

�
; � >

0: For these window choices, from the uniform rates in Lemma 1: Ĥ� ��+� = Ho +

op(1). It now follows that
����̂� � �o

��� = Op

�
N� 4

8+�

�
:
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