
Creating a Prototype Application
Compatible with DDI 3.1 for the STARDAT Project

3rd Annual European DDI Users Group Meeting
DDI - The Basis of Managing the Data Life Cycle
December 5 - 6, 2011, Gothenburg, Sweden

Alexander Mühlbauer

 Initial Situation and Intention of the STARDAT Project
 Different Archiving Tools
 Integration of Different Archiving Tools
 DDI Formats Currently Used

 Basic Architectural Foundations derived from Prototyping
 Mapping our Grown Data Structures to DDI 3.1
 DDI 3.1 Class Modeling with Object-Relational-Mapping
 Communication between Clients and Server
 Concept of Historization and DDI Versioning
 Undo Mechanism During Documentation Process

Overview

Initial Situation and Intention of the STARDAT Project

Different Archiving Tools

DSDM

ZACAT Variable
OverviewDBKda|ra Study

Overview
Report CBE

Report
ToolSDEdit

DBKEdit
Long-term

Preservation

DBK Data Catalogue
ZACAT Online Study Catalogue
DBKEdit Data Catalogue Edit-Tool
SDEdit Editing-Tool for Study Method Reports

DSDM Dataset Documentation Manager
CBE CodebookExplorer
da|ra Registration Agency

Online Publication Offline Publication

 Data Catalogue
http://www.gesis.org/en/services/research/english-question-text/

 Online Study Catalogue
http://zacat.gesis.org/webview/

Initial Situation and Intention of the STARDAT Project

Different Archiving Tools

http://www.gesis.org/en/services/research/english-question-text/
http://zacat.gesis.org/webview/

 Integrated management system for metadata

 Transfer of the features of DBKEdit, DSDM, CBE and further tools

 Interoperability with standards like DDI-C, DDI-L and ISO 20252

 Multi-language documentation on study and variable level

 Web based modul for structured metadata capture, management and
dissemination (Web Based Data Ingest)

Initial Situation and Intention of the STARDAT Project

Integration of Different Archiving Tools 1

 Controlled vocabularys (Thesauri)

 Related publications, continuity guides, scales, trends and additional metadata

 Longterm-preservation with DDI

 Export in different portals like ZACAT, Cessda Data Portal, Sowiport

Initial Situation and Intention of the STARDAT Project

Integration of Different Archiving Tools 2

Initial Situation and Intention of the STARDAT Project

DDI Formats Currently Used

 Export to DDI 2.0 and DDI 2.1
 for publication on ZACAT (Nesstar) server
 for data exchange with portals like da|ra and sowiport
 for long-term archiving

 Export to DDI 3.1
 for Enhanced Publication editor (linking publications to datasets)

Initial Situation and Intention of the STARDAT Project

Requirements Concerning DDI Formats 1

 Export to DDI 2.1 still needed
 for publication on ZACAT (Nesstar) server
 for data exchange with portals like da|ra and sowiport

 Export to DDI 2.5 needed
 for upgrading metadata to DDI 3

 Export to DDI 3.1 needed
 for long-term archiving
 for Enhanced Publication Editor (linking publications to datasets)

 Import from DDI all versions needed
 for data exchange with primary researchers/projects

Initial Situation and Intention of the STARDAT Project

Requirements Concerning DDI Formats 2

 Future DDI versions support needed

 Usage of rescource packages for reusing elements needed
 for elements of our own and other institutions

 Concept for long-term archiving of reused elements needed
 for long-term archiving
 for Enhanced Publication Editor (linking publications to datasets)

Basic Architectural Foundations from Prototyping

Mapping our Grown Data Structures to DDI 3.1
Really Internalize Lifecycle Orientation

 Managing documentation process of complex social science data
 Apply adequate grouping approach
 Identify a strategy to establish resource packages

 Migration issues
 Find equivalent elements
 Identify additional elements needed
 Identify reusable elements
 Handle with not mappable types

 Building software
 Existing software tools are static

 Only their combination “supports” lifecycle management
 New software tool shall be dynamic

 Lifecycle management is inherently contained

Basic Architectural Foundations from Prototyping

DDI 3.1 Class Modeling with Object-Relational-Mapping
What Does It Mean When We Talk About DDI 3 Usage?

 Supporting DDI 3
 Proprietary domain model
 Proprietary storage
→ I/O module with some squeezing mapping

 Compatible with DDI 3
 DDI 3 domain model, perhaps some proprietary extensions
 Storage in relational database
→ mapping between XML and relational database

 Based on DDI 3
 DDI 3 domain model, no proprietary extensions
 Storage in flat XML files or native XML databases
→ no mapping, full first-level interoperability

Basic Architectural Foundations from Prototyping

DDI 3.1 Class Modeling with Object-Relational-Mapping
Hiearchical Nested vs. Flat Relational Structures

 Strategy
 No ambition of finding a general solution
 Approach „One class per complex type“
 Approach „One class per element“

 General finding
 Too many (join) tables without substantial content
 Very few tables which hold all relevant information
 Not intuitive types
 Very time consuming and not promising

 Conclusion
 Object-relational mapping close to DDI Schema creates a crude relational model
 Early compromises abet early erosion of code
 My paradigm now: Ensure that own classes lead to valid DDI

Basic Architectural Foundations from Prototyping

Communication between Clients and Server
Two Formats for Data Exchange

 Promise of relatively higher performance

 Easily and quickly changeable

 Presentation model differs from DDI data model

 Exchange between view-driven user interfaces does not be standardized

 Can or perhaps needs to contain user interface specific information

 Avoid binding of clients to a specific DDI version

Basic Architectural Foundations from Prototyping

Communication between Clients and Server
Some Reasons for JSON

Basic Architectural Foundations from Prototyping

Concept of Historization and DDI Versioning
Defining the Difference

 Historization
 Tracking of all changes of objects with their properties and assoziationss to

other objects
 Foundation for undo mechanism and object versioning
 Characteristics: Lot of small data units, quick writing, many changes

 DDI Versioning (Publishing)
 Ensure that a published maintainable can not be changed any more
 Ensure fast access to a published maintainable
 „Publish a mintainable DDI object“ means: Label it at a certain revision of the

database with version number and as published
 Not “labeled” revisions may be deleted for relief some time
 Characteristics: Much less data as with historization, quick reading, no changes

Basic Architectural Foundations from Prototyping

Concept of Historization and DDI Versioning
Role-Based Transactional Revisions

Basic Architectural Foundations from Prototyping

Concept of Historization and DDI Versioning
Simple Example of Historization – Hibernate Envers API 1

Basic Architectural Foundations from Prototyping

Concept of Historization and DDI Versioning
Simple Example of Historization – Hibernate Envers API 2

Basic Architectural Foundations from Prototyping

Concept of Historization and DDI Versioning
Simple Example of Historization – Hibernate Envers API 2

 Undo is a convenient feature supporting the documentation process

 Often demanded by users as self-evident feature

 Unfortunately, design and implementation is not as easy as one might
think, the general requirement can quickly become very complex

 We defined an appropriate and well understandable undo scenario for
our needs
 User can undo own changes
 Admin can undo own and other users´ changes
 No redo (undo of undo)

Basic Architectural Foundations from Prototyping

Undo Mechanism During Documentation Process

Basic Architectural Foundations from Prototyping

Undo Mechanism During Documentation Process
Role-Based Linear Undo in a Multi-User Environment

 The plan was to have already finished a prototype.

 But there have been several challenges, the biggest are still:
 To cope with appropriate technology stack
 To neatly map and normalize existing data structures to DDI-L
 To pore over DDI class modeling with suitable RDBMS persistence

 But we stay tuned!

Facing Various Challenges

Thank you for your attention!
Any questions?

Alexander Mühlbauer
GESIS - Leibniz Institute for the Social Sciences

Data Archive for the Social Sciences

alexander.muehlbauer@gesis.org

mailto:alexander.muehlbauer@gesis.org

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23

